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• Why are we here?
– What is NetLogger?
– What is NetLogger good for?
– What is NetLogger not good for?

• NetLogger Components
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– instrumentation library
– system monitoring tools
– visualization tools

• Instrumentation Techniques
• Case Studies

– HPSS Storage Manager
– Radiance luminosity application
– Parallel remote data server (DPSS)

• Current Work
– Monitoring Agents
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Overview

• The Problem
– When building distributed systems, we often

observe unexpectedly low performance
• the reasons for which are usually not obvious

– The bottlenecks can be in any of the following
components:

• the applications
• the operating systems
• the disks or network adapters on either the sending or

receiving host
• the network switches and routers, and so on

• The Solution:
• Highly instrumented systems with precision timing

information and analysis tools
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Bottleneck Analysis

• Distributed system users and developers often
assume the problem is network congestion
– This is often not true

• In our experience tuning distributed applications,
performance problems are due to:
– network problems: 40%
– host problems: 20%
– application design problems/bugs: 40%

• 50% client , 50% server

• Therefore it is equally important to instrument the
applications
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Motivation

• To characterize the performance of distributed
applications, we have developed a methodology for
detailed, end-to-end, top-to-bottom monitoring and
analysis of significant events

– this allows coordinated monitoring of
applications, networks, and hosts

• This has proven invaluable for:
–  isolating and correcting performance bottlenecks
–  debugging distributed applications
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NetLogger Toolkit

• We have developed the NetLogger Toolkit

– A set of tools which make it easy for distributed
applications to log interesting events at every
critical point

– NetLogger also includes tools for host and
network monitoring

• The approach is novel in that it combines network,
host, and application-level monitoring to provide a
complete view of the entire system.
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Why “NetLogger”?

• The name “NetLogger” is somewhat misleading
– Should really be called: “Distributed

Application, Host, and Network Logger”

• “NetLogger” was a catchy name that stuck



NetLogger

When to use NetLogger

• When you want to:
– do performance/bottleneck analysis on

distributed applications
– determine which hardware components to

upgrade to alleviate bottlenecks
– do real-time or post-mortem analysis of

applications
– correlate application performance with system

information (ie: TCP retransmission's)
• works best with applications where you can follow

a specific item (data block, message, object)
through the system
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When NOT to use NetLogger

• Analyzing massively parallel programs (e.g.: MPI)
– Current visualization tools don’t scale beyond

tracking about 20 types of events at a time

• Analyzing many very short events
– system will become overwhelmed if too many

events
– we typically use NetLogger to monitor events

that take > .5 ms
– e.g: probably don’t want to use to instrument

the UNIX kernel
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NetLogger Components

• NetLogger Toolkit contains the following
components:
– NetLogger message format
– NetLogger client library
– NetLogger visualization tools
– NetLogger host/network monitoring tools

• Additional critical component for distributed
applications:
– NTP (Network Time Protocol) or GPS host clock is

required to synchronize the clocks of all systems
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NetLogger Message Format

• We are using the IETF draft standard Universal Logger
Message (ULM) format:

• a list of “field=value” pairs
• required fields: DATE, HOST, PROG, and LVL

—DATE = YYYYMMDDHHSS.SSSSSS
—PROG: program name
—LVL is the severity level (Emergency, Alert, Error, Usage, etc.)

• followed by optional user defined fields
• http://www.ietf.org/internet-drafts/draft-abela-ulm-05.txt

• NetLogger adds this required fields:
• NL.EVNT, a unique identifier for the event being logged

—e.g.: SERVER_IN, VMSTAT_USER_TIME, 
NETSTAT_RETRANSSEG
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NetLogger Message Format

• Sample NetLogger ULM event:
DATE=19980430133038.055784 HOST=foo.lbl.gov
PROG=testprog LVL=Usage NL.EVNT=SEND_DATA
SEND.SZ=49332

– This says program named testprog on host
foo.lbl.gov performed event named SEND_DATA,
size = 49332 bytes, at the time given

• User-defined data elements (any number) are used to
store information about the logged event - for example:

• NL.EVNT=SEND_DATA SEND.SZ=49332
—the number of bytes of data sent

• NL.EVNT=NETSTAT_RETRANSSEGS NS.RTS=2
—the number of TCP retransmits since the previous event



NetLogger

NetLogger “Mission”

• Our mission is to get everyone to use the
NetLogger/ULM format for logging
– ULM will hopefully become a “standard”
– This way we can all share log file management

and visualization tools
• Probably not realistic

– Working on filters to convert the following
to/from NetLogger format

• Pablo
• NWS
• Gloperf
• others?
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NetLogger API

• NetLogger Toolkit includes application libraries for
generating NetLogger messages
–  Can send log messages to:

• file
• host/port (netlogd)
• syslogd
• memory, then one of the above

• C, C++, Java, and Perl, and Python APIs are
currently supported
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NetLogger API

• Only 6 simple calls:
– NetLoggerOpen()

• create NetLogger handle

– NetLoggerWrite()
• get timestamp, build NetLogger message, send to destination

– NetLoggerGTWrite()
• must pass in results of Unix gettimeofday() call

– NetLoggerFlush()
• flush any buffered message to destination

– NetLoggerSetLevel()
• set ULM severity level

– NetLoggerClose()
• destroy NetLogger handle
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NetLogger API

• Open calls:
NLhandle   *lp = NULL;

/* log to a local file */
lp = NetLoggerOpen(NL_FILE, program_name, log_filename,

NULL, 0);

/* log to syslog */
lp = NetLoggerOpen(NL_SYSLOG, program_name, NULL,

NULL, 0);

/* log to “netlogd” on the specified host/port */
lp = NetLoggerOpen(NL_HOST, program_name, NULL,

hostname,  DPSS_NETLOGGER_PORT);

/* log to memory, then flush to host/port */
lp = NetLoggerOpen(NL_HOST_MEM, program_name, NULL,

hostname, DPSS_NETLOGGER_PORT);
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NetLogger Write Call

• Creates and Writes the log event:

NetLoggerWrite(nl, “EVENT_NAME”,
“EVENTID=%d F2=%d F3=%s F4=%.2f”, id,
user_data, user_string, user_float);

– timestamping is automatically done by library

– the “event name” field is required, all other fields
are optional

– Note: not thread-safe: threaded programs must put
a mutex lock around this call

• Example:

NetLoggerWrite(nl, “HTTPD.START_DISK_READ”,
“HTTPD.FNAME=%s HTTPD.HOST=%s”, fname,
hostname);
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Sample NetLogger Use

 lp = NetLoggerOpen(method, progname, NULL, 
hostname, NL_PORT);

while (!done)
{

 NetLoggerWrite(lp, "EVENT_START", 
"TEST.SIZE=%d", size);

 /* perform the task to be monitored */
 done = do_something(data, size);

 NetLoggerWrite(lp, "EVENT_END");
}
NetLoggerClose(lp);
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netlogd

• Use netlogd to collect NetLogger messages at a
central host
– use to avoid the need to sort/merge several log

files from several places
• Can also use netlogd to try to adjust time values for

clock skew
– useful if can’t get NTP installed
– allows clients to adjust all timestamps relative to

the netlogd host’s clock
– accurate only to about 5 ms, and assumes all

clients have the same latency to the netlogd host
– basically a major HACK, but can be useful



NetLogger

Logging to Memory

• Use the NL_HOST_MEM option to send NetLogger
events to memory if you are:
– monitoring bursts of events with a duration < 1 ms

• Flushing of events to disk or network will occur:
– automatically when specified memory block full
– when calling NetLoggerFlush()
– when calling NetLoggerClose()

• Size of memory buffer specified by NL_MAX_BUFFER
in netlogger.h
– default = 10,000 messages (typical message size is

128 bytes)
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NetLogger Host/Network Tools

• Wrapped UNIX network and OS monitoring tools to log
“interesting” events using the same log format
– netstat (TCP retransmissions, etc.)
– vmstat (system load, paging, etc.)
– iostat (disk activity)
– ping

• These tools have been wrapped with Perl or Java
programs which:
– parse the output of the system utility
– build NetLogger messages containing the results
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NetLogger Host Monitoring Tools

Usage:

nl_vmstat [-d #][-t N][-n][-f logfile] [-m # [host]]

       [-d N] output log messages every N msecs (default = 1000)

       [-t N] run for N minutes and exit (default = run for 60 min)

       [-n ] only log if value changes

       [-f logfile] write to file named logfile

       [-m N [host]] logging method: 0 = file, 1 = syslog, 2 = host
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Sample NetLogger System
Monitoring Tool

• Example: nl_vmstat -t 60 -d 5000 -m 2 logger.lbl.gov
– Java program will exec vmstat every 5 seconds for 1

hour, and send the results to netlogd on host
logger.lbl.gov

– Generates the following information:
• CPU usage by User
• CPU usage by System

• NetLogger Messages:
DATE=19990706125055.891620 HOST=portnoy.lbl.gov

PROG=nl_vmstat LVL=Usage NL.EVNT=VMSTAT_USER_TIME
VMS.VAL=9

DATE=19990706125055. 891112 HOST=portnoy.lbl.gov
PROG=nl_vmstat LVL=Usage NL.EVNT=VMSTAT_SYS_TIME
VMS.VAL=5
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NetLogger Network Tools

• NetLogger tool for SNMP queries
– Usage: nl_snmpget hostname object [port]

• Examples:
– host monitoring

• nl_snmpget unix_host sysName

— Returns: system.sysName.0 = wakko.lbl.gov

– router monitoring
• nl_snmpget routername ipInDelivers 3

—Returns: tcp.tcpInErrs.3 = 4000

– ATM switch monitoring
• nl_snmpget switchname sonetLineFEBEs

• nl_snmpget switchname portTransmittedCells
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Other Tools

• NetLogger also includes a set of PERL scripts to
– sort files by timestamp and/or other ULM field
– merge files
– generate gnuplot formatted file from a

NetLogger file
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NetLogger Event “Life Lines”
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Event ID

• In order to associate a group of events into a
“lifeline”, you must assign an event ID to each
NetLogger event

• Sample Event Ids
– file name
– block ID
– frame ID
– user name
– host name
– etc.
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Sample NetLogger Use with
Event IDs

lp = NetLoggerOpen(method, progname, NULL, hostname, NL_PORT);
for (i=0; i< num_blocks; i++)  {

NetLoggerWrite(lp, “START_READ”,
“BLOCK_ID=%d BLOCK_SIZE=%d”, i, size);

read_block(i);
NetLoggerWrite(lp, “END_READ”,

“BLOCK_ID=%d BLOCK_SIZE=%d”, i, size);
NetLoggerWrite(lp, “START_PROCESS”,

“BLOCK_ID=%d BLOCK_SIZE=%d”, i, size);
process_block(i);
NetLoggerWrite(lp, “END_PROCESS”,

“BLOCK_ID=%d BLOCK_SIZE=%d”, i, size);
NetLoggerWrite(lp, “START_SEND”,

“BLOCK_ID=%d BLOCK_SIZE=%d”, i, size);
send_block(i);
NetLoggerWrite(lp, “END_SEND”,

“BLOCK_ID=%d BLOCK_SIZE=%d”, i, size);
}
NetLoggerClose(lp);
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NetLogger Visualization Tools

• Exploratory, interactive analysis of the log data has
proven to be the most important means of identifying
problems

– this is provided by nlv (NetLogger Visualization)

• nlv functionality:
– can display several types of NetLogger events at

once
– user configurable: which events to plot, and the

type of plot to draw (lifeline, load-line, or point)
– play, pause, rewind, slow motion, zoom in/out, and

so on
– nlv can be run post-mortem or in real-time

• real-time mode done by reading the output of netlogd as it
is being written
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NLV Graph Types

• nlv supports graphing of “points”, load-lines, and
lifelines
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NLV
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NLV Zoom Feature
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NLV Graph Types
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NLV Configuration

• NLV is very flexible, with many options settable in
the configuration file.

• Format:
set +/-eventset_name
type <line,point,load>

id [ list of ULM field names used to determine which
NetLogger messages get grouped into the same graph
primitive ]

group [list of ULM field names which will be mapped to the
same color]

val field_name min_val max_val

annotate [ list of field names to display in with annotate
option ]

[ list of all event ID’s in this lifeline ]

• Each nlv graph object needs to be defined by a “set”
• Events and event-sets both use "+" and "-" to indicate

default visibility
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NLV Configuration

• Events and eventsets  are "stacked" in nlv in the
order given in the configuration file

• Other Keywords:
– groupalias A [ b c d ]

• list of fields values for the “group” event that can be
considered equivalent

•   e.g.: any "hostname" equal to b, c, or d will be
displayed and colored as a member of group A

• Specific config file examples will be shown with
each sample application later in the talk
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Example NLV Configuration

# display vmstat info as a “loadline”

set +VMSTAT
type load
# loadline constructed from messages with the same HOST and NL.EVNT
id [ HOST NL.EVNT ]
# messages with the same HOST get the same color
group HOST
#list of NL.EVNT values in this set_
[ +VMSTAT_SYS_TIME +VMSTAT_USER_TIME ]

# display netstat TCP retransmits as a “point”
set +NETSTAT
type point
# ignore values outside the range 0 to 999
val NS.VAL 0.0 999.0
# point constructed from messages from the same HOST and PROG
id [ HOST PROG ]
# messages with the same HOST get the same color
group HOST
[ +NETSTAT_RETRANSSEGS ]
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Example NLV Configuration

# display server data as a “lifeline”
set +SERVER_READ
type line

# lifeline constructed from messages from the same client
and server

id [ CLIENT_HOST DPSS.SERV ]

# messages with the same DPSS.SERV get the same color
group DPSS.SERV

[ +APP_SENT +DPSS_SERV_IN +DPSS_START_READ
+DPSS_END_READ +DPSS_START_WRITE +APP_RECEIVE ]
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Network Time Protocol

• For NetLogger timestamps to be meaningful, all
systems clocks must be synchronized.

– NTP is used to synchronize time of all hosts in
the system.

—NTP is from Dave Mills, U. of Delaware
(http://www.eecis.udel.edu/~ntp/)

– Must have NTP running on one or more primary
servers, and on a number of local-net hosts,
acting as secondary time servers

• Could also place GPS clocks on every host for
even more accurate clocks
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How to Instrument Your
Application

• You’ll probably want to add a NetLogger event to the
following places in your distributed application:
– before and after all disk I/O
– before and after all network I/O
– entering and leaving each distributed component
– before and after any significant computation

• e.g.: an FFT operation

– before and after any significant graphics call
• e.g.: certain CPU intensive OpenGL calls

• This is usually an iterative process
– add more NetLogger events as you zero in on the

bottleneck
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Does NetLogger affect
application performance?

• There are several things to be careful of when doing
this type of monitoring:
– If logging to disk, don’t log to a nfs mounted disk

• best to log to /tmp, which may actually be RAM (Solaris)

– Probably don’t want to send log messages to a
slow (i.e.: 10BT) or congested network, as you’ll
just make it worse

• log to a local file instead
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Sample NetLogger Analysis

• We next show how NetLogger was added to 3
different applications:
– A cache manager for the HPSS
– A remote visualization application
– A HENP data analysis package accessing

parallel remote data service
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Example 1: HPSS Storage
Manager Application

• NetLogger was used to test and verify the results
of a Storage Access Coordination System (STACS)
by LBNL’s Data Management Group

• STACS is designed to optimize the use of a disk
cache with an HPSS Mass Storage system, and
tries to  minimize tape mount requests by
clustering related data on the same tape

• NetLogger was used to look at:
– per-query latencies
– to show that subsequent fetches of spatially

clustered data "hit" in the cache.
• (http://gizmo.lbl.gov/sm/)
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STACS Instrumentation Points

Client

Cache HPSS
Tape Storage

Monitoring Points:
A) request arrives at HPSS
B) start transfer from tape
C) tape transfer finished
D) file available to client
E) file retrieved by client
F) file released by client
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NLV for STACS: Tracking File
Requests



NetLogger

Tracking Files and System Performance
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NLV Configuration File for this
Application

set +SMANAGER
type line
# lifeline defined by messages for the same file and

a given query ID number
id [ QUERY FID ]
# color lines by query ID
group QUERY
[
+B_REQUEST_ARRIVED
+C_TRANSFER_STARTED
+D_STAGE_FINISHED
+E_FILE_PUSHED
+F_FILE_RETRIEVED
+G_FILE_RELEASED
]
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Example 2: Parallel Visualization
Application

• Radiance is a suite of programs for the analysis
and visualization of lighting in design.
– Input includes the scene geometry, materials, luminance,

time, date, and sky conditions

• Radiance has been adapted at LBNL to run on
multiple cluster nodes
– The image is broken into many small pieces, and

illumination calculations are performed for each piece
independently

• Used NetLogger to measure:
– overall system throughput
– latency for each stage of getting data, processing it, and

writing it
– patterns of latency which reflect resource contention and

other interaction delays
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Client
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Parallel Ray Tracing (Radiance):
Instrumentation Points
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NetLogger Radiance Results:
Before Tuning
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NetLogger Radiance Results:
After Tuning
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NLV Configuration File for this
Application

     set +RADSERVER

type line

# lifeline defined by processing element id

id PE

# color lifelines by LTYPE (1=server, 2=client)

group LTYPE

[ +S_BEFORE_READ +S_AFTER_READ +S_BEFORE_PROJECTION
+S_AFTER_PROJECTION +S_BEFORE_RTRACE +S_AFTER_RTRACE
+S_BEFORE_WRITE S_AFTER_WRITE ]

set +RADCLIENT

type line

id PROG

group LTYPE

[ +C_BEFORE_WRITE +C_AFTER_WRITE +C_AFTER_READ +C_END ]
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Example 3:  Parallel Data Block
Server

• The Distributed Parallel Storage Server (DPSS)
– provides high-speed parallel access to remote

data
– Unique features of the DPSS:

• On a high-speed network, can actually access remote
data faster that from a local disk

—57 MB/sec vs 10 MB/sec

• Only need to send parts of the file currently required
over the network

—e.g.: client may only need 100 MB from a 2 GB data set
—analogous to http model

• NetLogger was used for performance tuning and
debugging of the DPSS
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DPSS Cache Architecture

Client Application

Parallel
Disks

DPSS Server

Parallel
Disks

DPSS Server

Parallel
Disks

DPSS Server

DPSS Master

data blocks

data blocks

data blocks
Logical Block

Requests

� logical to physical
block lookup

� access control
� load balancing

Physical  Block
Requests
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DPSS Instrumentation
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NetLogger Results for the DPSS
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NetLogger Results for the DPSS
over a WAN
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NLV of DPSS with a HENP client
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NLV Configuration File for this
Application

set +STAF
type line
id [ HOST PROG]
group HOST
[ +STAF_OPEN_R +START_GETEVENT +STOP_GETEVENT
+STAF_CLOSE_R ]

set +DPSS_READ
type line

#lifeline defined by DPSS.BID and HOST
id [DPSS.BID HOST]

# color lines by DPSS.SERV
group DPSS.SERV

[ +APP_SENT +DPSS_MASTER_IN +DPSS_MASTER_OUT
+DPSS_SERV_IN +DPSS_START_READ +DPSS_END_READ
+DPSS_START_WRITE +APP_RECEIVE ]
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Current Work: JAMM

• Java Agents for monitoring and management
(JAMM)
– Java RMI-based agents are used to start up

NetLogger versions of system tools
• netstat, vmstat, uptime, xntpdc, ping, netperf,

etc.

• Monitoring can be based on application use
– e.g.: only do monitoring while a client is

connected to a server

• For more info see: http://www-didc.lbl.gov/JAMM/
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JAMM for active Network
Monitoring

• Network performance data is measured using netperf
(http://www.netperf.org) and ping, and results are
published in an LDAP database

• JAMM agents are used to monitor server activity, and
automatically start netperf and ping experiments
between client and server hosts

• Applications can query LDAP for this information,
and set the optimal TCP buffer size based on this.
– Optimal buffer size equal 2 x ( bandwidth * delay)
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Java Agents For Monitoring
and Management (JAMM)

Client Application

DPSS Server

DPSS Server

DPSS Server

DPSS Master

LDAP Database

agents

HTTP server

agents

agents

agents

agents
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Current Work

• NetLogger enhancements:
– adding Globus security

• plan to use GlobusIO for sending NetLogger socket
connections

– binary transmission/storage format
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Grid Monitoring Service

• Our goal is to make this sort of monitoring a standard
“grid service”

• Before this can happen, we need to define:
– archive system

• standard interface to archive system (probably LDAP?)

– Network monitoring system
• Surveyor, NWS, pingER, OCXmon, GloPerf,…
• SNMP security issues (SNMP proxy?)

• Grid Forum “end to end monitoring” working group
• DOE NGI monitoring / instrumentation working group

– goal is to deploy something by the end of the year
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 Getting NetLogger

• Source code and some precompiled binaries are
available at:
– http://www-didc.lbl.gov/NetLogger

• Solaris, Linux, and Irix versions of nlv are
currently supported


